
Eur. Phys. J. B 58, 175–184 (2007)
DOI: 10.1140/epjb/e2007-00208-2 THE EUROPEAN

PHYSICAL JOURNAL B

Growing distributed networks with arbitrary degree distributions

G. Ghoshal1,2 and M.E.J. Newman1,3,a

1 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
2 Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, MI 48109, USA
3 Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA

Received 1st February 2007 / Received in final form 3 May 2007
Published online 1st August 2007 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2007

Abstract. We consider distributed networks, such as peer-to-peer networks, whose structure can be ma-
nipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on
degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules
to arrange for the network to have any degree distribution we desire. We also describe a mechanism based
on biased random walks by which appropriate rules could be implemented in practice. As an example
application, we describe and simulate the construction of a peer-to-peer network optimized to minimize
search times and bandwidth requirements.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees

1 Introduction

Complex networks, such as the Internet, the worldwide
web, and social and biological networks, have attracted a
remarkable amount of attention from the physics commu-
nity in recent years [1–4]. Most studies of these systems
have concentrated on determining their structure or the ef-
fects that structure has on the behavior of the system. For
instance, a considerable amount of effort has been devoted
to studies of the degree distributions of networks, their
measurement and the formulation of theories to explain
how they come to take the observed forms, and models
of the effect of particular degree distributions on dynam-
ical processes on networks, network resilience, percola-
tion properties, and many other phenomena. Such studies
are appropriate for “naturally occurring” networks, whose
structure grows or is created according to some set of rules
not under our direct control. The Internet, the web, and
social networks fall into this category even though they
are man-made, since their growth is distributed and not
under the control of any single authority.

Not all networks fall in this class however. There are
some networks whose structure is centrally controlled,
such as telephone networks, some transportation net-
works, or distribution networks like power grids. For these
networks it is interesting to ask how, if one can design
the network to have any structure one pleases, one could
choose that structure to optimize some desired property of
the network. For instance, Paul et al. [5] have considered

a e-mail: mejn@umich.edu

how the structure of a network should be chosen to opti-
mize the network’s robustness to deletion of its vertices.

In this paper we study a class of networks that falls
between these two types. There are some networks that
grow in a collaborative, distributed fashion, so that we
cannot control the network’s structure directly. But we
can control some of the rules by which the network forms
and this in turn allows us a limited degree of influence over
the structure. The archetypal example of such a system is
a distributed database such as a peer-to-peer filesharing
network, which is a virtual network of linked computers
that share data among themselves. The network is formed
by a dynamical process under which individual comput-
ers continually join or leave the network, and the rules of
joining and leaving can be manipulated to some extent
by changing the behavior of the software governing com-
puters’ behaviors. It is well established that the structure
of peer-to-peer networks can have a strong effect on their
performance [6,7] but to a large extent that structure has
in the past been regarded as an experimentally determined
quantity [8]. Here we consider ways in which the structure
can be manipulated by changing the behavior of individ-
ual nodes so as to optimize network performance.

2 Growing networks with desired properties

In this paper we focus primarily on creating networks with
desired degree distributions: the degree distribution typ-
ically has a strong effect on the behavior of the network
and is relatively straightforward to treat mathematically.

176 The European Physical Journal B

There are two basic problems we need to address if we
want to create a network with a specific degree distribu-
tion solely by manipulating the rules by which vertices
enter and leave the network. First, we need to find rules
that will achieve the desired result, and second, we need
to find a practical mechanism that implements those rules
and operates in reasonable time. We deal with these ques-
tions in order.

Our approach to growing a network with a desired de-
gree distribution is based on the idea of the “attachment
kernel” introduced by Krapivsky and Redner [9]. We as-
sume that vertices join our network at intervals and that
when they do so they form connections—edges—to some
number of other vertices in the network. By designing the
software appropriately, we can in a peer-to-peer network
choose the number of edges a newly joining vertex makes
and also, as we will shortly show, some crucial aspects of
which other vertices those edges connect to.

Let us define pk to be the degree distribution of our
network at some time, i.e., the fraction of vertices having
degree k, which satisfies the normalization condition

∞∑

k=0

pk = 1. (1)

And let us define the attachment kernel πk to be the prob-
ability that an edge from a newly appearing vertex con-
nects to a particular preexisting vertex of degree k, di-
vided by the number n of vertices in the network. It is
this attachment kernel that we will manipulate to pro-
duce a desired degree distribution. The extra factor of n
in the definition is not strictly necessary, but it is conve-
nient: since the total number of vertices of degree k is npk,
it means that the probability of a new edge connecting to
any vertex of degree k is just πkpk, and hence πk satisfies
the normalization condition

∞∑

k=0

πkpk = 1. (2)

In a peer-to-peer network users may exit the network
whenever they want and we as designers have little control
over this aspect of the network dynamics. We will assume
in the calculations that follow that vertices simply vanish
at random. We will also assume that, on the typical time-
scales over which people enter and leave the network, the
total size n of the network does not change substantially,
so that the rates at which vertices enter and leave are
roughly equal. For simplicity let us say that exactly one
vertex enters the network and one leaves per unit time
(although the results presented here are in fact still valid
even if only the probabilities per unit time of addition and
deletion of vertices are equal and not the rates).

Now let us chose the initial degrees of vertices when
they join the network, i.e., the number of connections that
they form upon entering, at random from some distribu-
tion rk. Building on our previous results in [10], we ob-
serve that the evolution of the degree distribution of our
network can be described by a rate equation as follows.
The number of vertices with degree k at a particular time

is npk. One unit of time later we have added one vertex
and taken away one vertex, so that the number with de-
gree k becomes

np′k = npk + cπk−1pk−1 − cπkpk

+ (k + 1)pk+1 − kpk − pk + rk, (3)

with the convention that p−1 = 0, and c =
∑∞

k=0 krk,
which is the average degree of vertices added to the net-
work. The terms cπk−1pk−1 and −cπkpk in equation (3)
represent the flow of vertices with degree k− 1 to k and k
to k+1, as they gain extra edges with the addition of new
vertices. The terms (k + 1)pk+1 and −kpk represent the
flow of vertices with degree k + 1 and k to k and k− 1, as
they lose edges with the removal of neighboring vertices.
The term −pk represents the removal of a vertex of degree
k and the term rk represents the addition of a new vertex
with degree k to the network.

Assuming pk has an asymptotic form in the limit of
large time, that form is given by setting p′k = pk thus:

cπk−1pk−1 − cπkpk + (k + 1)pk+1 − kpk

− pk + rk = 0. (4)

Following previous convention [11], let us define a gener-
ating function G0(z) for the degree distribution thus:

G0(z) =
∞∑

k=0

pkzk, (5)

as well as generating functions for the degrees of vertices
added and for the attachment kernel thus:

F (z) =
∞∑

k=0

rkzk, (6)

H(z) =
∞∑

k=0

πkpkzk. (7)

Multiplying both sides of (4) by zk and summing over k,
we then find that the generating functions satisfy the dif-
ferential equation

(1 − z)
dG0

dz
− G0(z) − c(1 − z)H(z) + F (z) = 0. (8)

We are interested in creating a network with a given degree
distribution, i.e., with a given G0(z). Rearranging (8), we
find that the choice of attachment kernel πk that achieves
this is such that

H(z) =
1
c

[
dG0

dz
+

F (z) − G0(z)
1 − z

]
. (9)

Taking the limit z → 1, noting that normalization requires
that all the generating functions tend to 1 at z = 1, and
applying L’Hopital’s rule, we find

1 =
1
c

[〈k〉 + 〈k〉 − c] , (10)

G. Ghoshal and M.E.J. Newman: Growing distributed networks with arbitrary degree distributions 177

where we have made use of the fact that the average degree
in the network is 〈k〉 = G′

0(1) and c = H ′(1). Rearranging,
we then find that c = 〈k〉. In other words, solutions to
equation (8) require that the average degree c of vertices
added to the network be equal to the average degree of
vertices in the network as a whole. Making use of this
result, we can write equation (9) in the form

H(z) = G1(z) +
F (z) − G0(z)

c(1 − z)
, (11)

where G1(z) = G′
0(z)/G′

0(1) =
∑

k qkzk is the generating
function for the so-called excess degree distribution

qk =
(k + 1)pk+1

〈k〉 , (12)

which appears in many other network-related
calculations—see, for instance, reference [11].

Now it is straightforward to derive the desired attach-
ment kernel. Noting that

1
1 − z

=
∞∑

k=0

zk, (13)

we can simply read off the coefficient of zk on either side
of equation (11), to give

πkpk = qk +
1
c

k∑

m=0

(rm − pm), (14)

or equivalently

πk =
1

cpk

[
(k + 1)pk+1 + Pk+1 − Rk+1

]
, (15)

where Pk is the cumulative distribution of vertex degrees
and Rk is the cumulative distribution of added degrees:

Pk =
∞∑

m=k

pm, Rk =
∞∑

m=k

rm. (16)

Since we are at liberty to choose both rk and πk, we
have many options for satisfying equation (15); given (al-
most) any choice of the distribution rk of the degrees of
added vertices, we can find the corresponding πk that will
give the desired final degree distribution of the network.
One simple choice would be to make the degree distribu-
tion of the added vertices the same as the desired degree
distribution, so that Rk = Pk. Then

πk =
qk

pk
=

(k + 1)pk+1

cpk
. (17)

In other words, if we have some desired degree distribu-
tion pk for our network, one way to achieve it is to add
vertices with exactly that degree distribution and then
arrange the attachment process so that the degree distri-
bution remains preserved thereafter, even as vertices and
edges are added to and removed from the network. Equa-
tion (17) tells us the choice of attachment kernel that will
achieve this. Equation (17) will work for essentially any
choice of degree distribution pk, except choices for which
pk = 0 and pk+1 > 0 for some k. In the latter case equa-
tion (17) will diverge for some value(s) of k.

2.1 Example: power-law degree distribution

As an example, consider the creation of a network with
a power-law degree distribution. Adamic et al. [6] have
shown that search processes on peer-to-peer networks with
power-law degree distributions are particularly efficient, so
there are reasons why one might want to generate such a
network.

Let us choose

pk =

{
Ck−γ for k ≥ 1,
p0 for k = 0,

(18)

where γ and p0 are constants and the normalizing factor C
is given by

C =
1 − p0

ζ(γ)
, (19)

where ζ(γ) is the Riemann zeta-function. Then the mean
degree is

〈k〉 = c = (1 − p0)
ζ(γ − 1)

ζ(γ)
, (20)

and equation (17) tells us that the correct choice of at-
tachment kernel in this case is

πk =
1

1 − p0

ζ(γ)
ζ(γ − 1)

kγ

(k + 1)γ−1
, (21)

for k ≥ 1 and

π0 =
1

p0ζ(γ − 1)
. (22)

It is interesting to note that as k becomes large, this
attachment kernel goes as πk ∼ k, the so-called (linear)
preferential attachment form in which vertices connect to
others in simple proportion to their current degree. In
growing networks this form is known to give rise, asymp-
totically, to a power-law degree distribution. It is impor-
tant to understand, however, that in the present case the
network is not growing and hence, despite the apparent
similarity, this is not the same result. Indeed, it is known
that for non-growing networks, purely linear preferential
attachment does not produce power-law degree distribu-
tions [12,13], but instead generates stretched exponential
distributions [10]. Thus it is somewhat surprising to ob-
serve that one can, nonetheless, create a power-law degree
distribution in a non-growing network using an attach-
ment kernel that seems, superficially, quite close to the
linear form.

Sarshar and Roychowdhury [12] showed previously
that it is possible to generate a non-growing power-law
network by using linear preferential attachment and then
compensating for the expected loss of power-law behavior
by rewiring the connections of some vertices after their ad-
dition to the network. Our results indicate that, although
this process will certainly work, it is not necessary: a slight
modification to the preferential attachment process will
achieve the same goal and frees us from the need to rewire
any edges.

Note also that (21) is not the only solution of equa-
tion (15) that will generate a power-law distribution. If

178 The European Physical Journal B

we choose a different (e.g., non-power-law) distribution
for the vertices added to the network, we can still gen-
erate an overall power-law distribution by choosing the
attachment kernel to satisfy equation (15). Suppose, for
instance, that, rather than adding vertices with a power-
law degree distribution, we prefer to give them a Poisson
distribution with mean c:

rk = e−c ck

k!
. (23)

In this case Rk = 1 − Γ (k, c)/Γ (k), where Γ (k) is the
standard gamma function and Γ (k, c) is the incomplete
gamma function. Then the power law is correctly gener-
ated by the choice

πk =
1

1 − p0

ζ(γ)
ζ(γ − 1)

kγ

[
(k + 1)−γ+1 + ζ(γ, k + 1)

− ζ(γ)
1 − p0

(
1 − Γ (k + 1, c)

Γ (k + 1)

)]
, (24)

for k ≥ 1, where ζ(γ, x) is the generalized zeta function
ζ(γ, x) =

∑∞
k=0(k + x)−γ . For k = 0,

π0 =
1

p0ζ(γ − 1)

[
1 +

e−c − p0

1 − p0
ζ(γ)

]
. (25)

3 A practical implementation

In theory, we should be able use the ideas of the previous
section to grow a network with a desired degree distribu-
tion. This does not, however, yet mean we can do so in
practice. To make our scheme a practical reality, we still
need to devise a realistic way to place edges between ver-
tices with the desired attachment kernel πk. If each vertex
entering the network knew the identities and degrees of
all other vertices, this would be easy: we would simply
select a degree k at random in proportion to πkpk, and
then attach our new edge to a vertex chosen uniformly at
random from those having that degree.

In the real world, however, and particularly in peer-to-
peer networks, no vertex “knows” the identity of all others.
Typically, computers only know the identities (such as IP
addresses) of their immediate network neighbors. To get
around this problem, we propose the following scheme,
which makes use of biased random walks.

A random walk, in this context, is a succession of steps
along edges in our network where at each vertex i we
choose to step next to a vertex chosen at random from
the set of neighbors of i. In the context of a peer-to-peer
computer network, for example, such a walk can be imple-
mented by message passing between peers. The “walker”
is a message or data packet that is passed from computer
to neighboring computer, with each computer making ran-
dom choices about which neighbor to pass to next.

Starting a walk from any vertex in the network, we can
sample vertices by allowing the walk to take some fixed
number of steps and then choosing the vertex that it lands
upon on its final step. The use of random walks in this way

has been considered previously by Gkantsidis et al. [14],
who found that in certain circumstances random walks can
provide an efficient mechanism for growing appropriately
structured networks. Gkantsidis et al. considered only un-
biased walks, however, which limits the range of possible
outcomes. In our work, by contrast, we consider walks in
which the choice of which step to make at each vertex is
deliberately biased to create a desired probability distri-
bution for the sample as follows.

Consider a walk in which a walker at vertex j chooses
uniformly at random one of the kj neighbors of that ver-
tex. Let us call this neighbor i. Then the walker takes a
step to vertex i with some acceptance probability Pij . The
total probability Tij of a transition from j to i given that
we are currently at j is

Tij =
Aij

kj
Pij , (26)

where kj is the degree of vertex j and Aij is an element
of the adjacency matrix:

Aij =

{
1 if there is an edge joining vertices i, j,
0 otherwise.

(27)
If the step is not accepted, then the random walker re-
mains at vertex j for the current step.

This random walk constitutes an ordinary Markov pro-
cess, which converges to a distribution pi over vertices pro-
vided the network is connected (i.e., consists of a single
component) and provided Tij satisfies the detailed balance
condition

Tijpj = Tjipi. (28)

In the present case we wish to select vertices in pro-
portion to the attachment kernel πk. Setting pi = πki , this
implies that Tij should satisfy

Tij

Tji
=

pi

pj
=

πki

πkj

. (29)

Or, making use of equations (17) and (26) for the case
where rk = pk, we find

Pij

Pji
=

(ki + 1)pki+1

kipki

kjpkj

(kj + 1)pkj+1
=

qkiqkj−1

qkj qki−1
, (30)

where qk is again the excess degree distribution, equa-
tion (12).

In practice, we can satisfy this equation by making the
standard Metropolis-Hastings choice for the acceptance
probability:

Pij =

{
qkiqkj−1/qkj qki−1 if qki/qki−1 < qkj /qkj−1,
1 otherwise.

(31)
Thus the calculation of the acceptance probability requires
only that each vertex know the degrees of its neighboring
vertices, which can be established by a brief exchange of
data when the need arises.

G. Ghoshal and M.E.J. Newman: Growing distributed networks with arbitrary degree distributions 179

As an example, suppose we wish to generate a network
with a Poisson degree distribution

pk = e−µ µk

k!
, (32)

where µ is the mean of the Poisson distribution. Then we
find that the appropriate choice of acceptance ratio is

Pij =

{
kj/ki if ki > kj ,
1 otherwise.

(33)

(As discussed above, we must also make sure to choose
the mean degree c of vertices added to the network to be
equal to µ.)

Our proposed method for creating a network is thus as
follows. Each newly joining vertex i first chooses a degree k
for itself, which is drawn from the desired distribution pk.
It must also locate one single other vertex j in the net-
work. It might do this for instance using a list of known
previous members of the network or a standardized list
of permanent network members. Vertex j is probably not
selected randomly from the network, so it is not chosen
as a neighbor of i. Instead, we use it as the starting point
for a set of k biased random walkers of the type described
above. Each walker consists of a message, which starts at j
and propagates through the network by being passed from
computer to neighboring computer. The message contains
(at a minimum) the address of the computer at vertex i
as well as a counter that is updated by each computer to
record the number of steps the walker has taken. (Bear
in mind that steps on which the walker doesn’t move, be-
cause the proposed move was rejected, are still counted as
steps.) The computer that the walker reaches on its tth
step, where t is a fixed but generous constant chosen to al-
low enough time for mixing of the walk, establishes a new
network edge between itself and vertex i and the walker is
then deleted. When all k walkers have terminated in this
way, vertex i has k new neighbors in the network, chosen
in proportion to the correct attachment kernel πk for the
desired distribution. After a suitable interval of time, this
process will result in a network that has the chosen degree
distribution pk, but is otherwise random.

As a test of this method, we have performed simula-
tions of the growth of a network with a Poisson degree
distribution as in equation (32). Starting from a random
graph of the desired size n, we randomly add and remove
vertices according to the prescription given above. Fig-
ure 1 shows the resulting degree distribution for the case
µ = 10, along with the expected Poisson distribution. As
the figure shows, the agreement between the two is excel-
lent.

4 Example application

As an example of the application of these ideas we con-
sider peer-to-peer networks. Bandwidth restrictions and
search times place substantial constraints on the perfor-
mance of peer-to-peer networks, and the methods of the

10-6

10-5

10-4

10-3

10-2

10-1

100

 1 10 100

P
ro

ba
bi

lit
y

P
k

Degree k

Fig. 1. The degree distribution for a network of n = 50 000
vertices generated using the biased random walk mechanism
described in the text with µ = 10. The points represent the
results of our simulations and the solid line is the target dis-
tribution, equation (32).

previous sections can be used to nudge networks towards
a structure that improves their performance in these re-
spects. More sophisticated applications are certainly pos-
sible, but the one presented here offers an indication of
the kinds of possibilities open to us.

4.1 Definition of the problem

Consider a distributed database consisting of a set of com-
puters each of which holds some data items. Copies of the
same item can exist on more than one computer, which
would make searching easier, but we will not assume this
to be the case. Computers are connected together in a “vir-
tual network,” meaning that each computer is designated
as a “neighbor” of some number of other computers. These
connections between computers are purely notional: every
computer can communicate with every other directly over
the Internet or other physical network. The virtual net-
work is used only to limit the amount of information that
computers have to keep about their peers.

Each computer maintains a directory of the data items
held by its network neighbors, but not by any other com-
puters in the network. Searches for items are performed
by passing a request for a particular item from computer
to computer until it reaches one in whose directory that
item appears, meaning that one of that computer’s neigh-
bors holds the item. The identity of the computer holding
the item is then transmitted back to the origin of the
search and the origin and target computers communicate
directly thereafter to negotiate the transfer of the item.
This basic model is essentially the same as that used by
other authors [6] as well as by many actual peer-to-peer
networks in the real world. Note that it achieves efficiency
by the use of relatively large directories at each vertex of
the network, which inevitably use up memory resources on
the computers. However, with standard hash-coding tech-
niques and for databases of the typical sizes encountered

180 The European Physical Journal B

in practical situations (thousands or millions of items) the
amounts of memory involved are quite modest by modern
standards.

4.2 Search time and bandwidth

The two metrics of search performance that we consider
in this example are search time and bandwidth, both of
which should be low for a good search algorithm. We de-
fine the search time to be the number of steps taken by a
propagating search query before the desired target item is
found. We define the bandwidth for a vertex as the aver-
age number of queries that pass through that vertex per
unit time. Bandwidth is a measure of the actual communi-
cations bandwidth that vertices must expend to keep the
network as a whole running smoothly, but it is also a rough
measure of the CPU time they must devote to searches.
Since these are limited resources it is crucial that we not
allow the bandwidth to grow too quickly as vertices are
added to the network, otherwise the size of the network
will be constrained, a severe disadvantage for networks
that can in some cases swell to encompass a significant
fraction of all the computers on the planet. (In some early
peer-to-peer networks, issues such as this did indeed place
impractical limits on network size [15,16].)

Assuming that the average behavior of a user of the
database remains essentially the same as the network
gets larger, the number of queries launched per unit time
should increase linearly with the size of the network, which
in turn suggests that the bandwidth per vertex might also
increase with network size, which would be a bad thing.
As we will show, however, it is possible to avoid this by
designing the topology of the network appropriately.

4.3 Search strategies and search time

In order to treat the search problem quantitatively, we
need to define a search strategy or algorithm. Here we
consider a very simple—even brainless—strategy, again
employing the idea of a random walk. This random walk
search is certainly not the most efficient strategy possible,
but it has two significant advantages for our purposes.
First, it is simple enough to allow us to carry out analytic
calculations of its performance. Second, as we will show,
even this basic strategy can be made to work very well.
Our results constitute an existence proof that good per-
formance is achievable: searches are necessarily possible
that are at least as good as those analyzed here.

The definition of our random walk search is simple: the
vertex i originating a search sends a query for the item it
wishes to find to one of its neighbors j, chosen uniformly at
random. If that item exists in the neighbor’s directory the
identity of the computer holding the item is transmitted to
the originating vertex and the search ends. If not, then j
passes the query to one of its neighbors chosen at random,
and so forth. (One obvious improvement to the algorithm
already suggests itself: that j not pass the query back to
i again. As we have said, however, our goal is simplicity

and we will allow such “backtracking” in the interests of
simplifying the analysis.)

We can study the behavior of this random walk search
by a method similar to the one we employed for the anal-
ysis of the biased random walks of Section 3. Let pi be
the probability that our random walker is at vertex i at
a particular time. Then the probability p′i of its being at
i one step later, assuming the target item has not been
found, is

p′i =
∑

j

Aij

kj
pj , (34)

where kj is the degree of vertex j and Aij is an element of
the adjacency matrix, equation (27). Under the same con-
ditions as before the probability distribution over vertices
then tends to the fixed point of (34), which is at

pi =
ki

2m
, (35)

where m is the total number of edges in the network. That
is, the random walk visits vertices with probability pro-
portional to their degrees. (An alternative statement of
the same result is that the random walk visits edges uni-
formly.)

When our random walker arrives at a previously un-
visited vertex of degree ki, it “learns” from that vertex’s
directory about the items held by all immediate neigh-
bors of the vertex, of which there are ki − 1 excluding the
vertex we arrived from (whose items by definition we al-
ready know about). Thus at every step the walker gathers
more information about the network. The average num-
ber of vertices it learns about upon making a single step
is

∑
i pi(ki−1), with pi given by (35), and hence the total

number it learns about after τ steps is

τ

2m

∑

i

ki(ki − 1) = τ

[〈k2〉
〈k〉 − 1

]
, (36)

where 〈k〉 and 〈k2〉 represent the mean and mean-square
degrees in the network and we have made use of 2m =
n〈k〉. (There is in theory a correction to this result be-
cause the random walker is allowed to backtrack and visit
vertices visited previously. For a well-mixed walk, how-
ever, this correction is of order 1/〈k〉, which, as we will
see, is negligible for the networks we will be considering.)

How long will it take our walker to find the desired
target item? That depends on how many instances of the
target exist in the network. In many cases of practical
interest, copies of items exist on a fixed fraction of the
vertices in the network, which makes for quite an easy
search. We will not however assume this to be the case
here. Instead we will consider the much harder problem
in which copies of the target item exist on only a fixed
number of vertices, where that number could potentially
be just 1. In this case, the walker will need to learn about
the contents of O(n) vertices in order to find the target
and hence the average time to find the target is given by

τ

[〈k2〉
〈k〉 − 1

]
= An, (37)

G. Ghoshal and M.E.J. Newman: Growing distributed networks with arbitrary degree distributions 181

for some constant A, or equivalently,

τ = A
n

〈k2〉/〈k〉 − 1
. (38)

(This equation is related to previous results by
Broder et al. [17], who showed that the number of steps
required for a random walker to visit a fixed fraction of
the vertices in a network can be expressed in terms of the
second eigenvalue of the transition matrix for the walk.)

Consider, for instance, a network with a power-law de-
gree distribution of the form, pk = Ck−γ , where γ is a
positive exponent and C is a normalizing constant cho-
sen such that

∑∞
k=0 pk = 1. Real-world networks usually

exhibit power-law behavior only over a certain range of
degree. Taking the minimum of this range to be k = 1
and denoting the maximum by kmax, we have

〈k2〉
〈k〉 ∼ −k3−γ

max − 1
k2−γ
max − 1

. (39)

Typical values of the exponent γ fall in the range 2 < γ <
3, so that k2−γ

max is small for large kmax and can be ignored.
On the other hand, k3−γ

max becomes large in the same limit
and hence 〈k2〉/〈k〉 ∼ k3−γ

max and

τ ∼ nkγ−3
max . (40)

The scaling of the search time with system size n thus
depends, in this case, on the scaling of the maximum de-
gree kmax.

As an example, Aiello et al. [18] studied power-law
degree distributions with a cut-off of the form kmax ∼
n1/γ , which gives

τ ∼ n2−3/γ . (41)

A similar result was obtained previously by
Adamic et al. [6] using different methods.

4.4 Bandwidth

Bandwidth is the mean number of queries reaching a given
vertex per unit time. Equation (35) tells us that the prob-
ability that a particular current query reaches vertex i at a
particular time is ki/2m, and assuming as discussed above
that the number of queries initiated per unit time is pro-
portional to the total number of vertices, the bandwidth
for vertex i is

Bn
ki

2m
= B

ki

〈k〉 , (42)

where B is another constant.
This implies that high-degree vertices will be over-

loaded by comparison with low-degree ones so that, de-
spite their good performance in terms of search times, net-
works with power-law or other highly right-skewed degree
distributions may be undesirable in terms of bandwidth,
with bottlenecks forming around the vertices of highest
degree that could harm the performance of the entire net-
work. If we wish to distribute load more evenly among
the computers in our network, a network with a tightly
peaked degree distribution is desirable.

4.5 Choice of network

A simple and attractive choice for our network is the
Poisson distributed network of Section 3. For a Poisson
degree distribution with mean µ we have 〈k〉 = µ and
〈k2〉 = µ2 + µ. Then, using equation (38), the average
search time is

τ = A
n

µ
. (43)

As we have seen, a network of this type can be realized in
practice with a biased-random-walker attachment mecha-
nism of the kind described in Section 3.

Now if we allow µ to grow as some power of the size
of the entire network, µ ∼ nα with 0 ≤ α ≤ 1, then τ ∼
n1−α. For smaller values of α, searches will take longer,
but vertices’ degrees are lower on average meaning that
each vertex will have to devote less memory resources to
maintaining its directory. Conversely, for larger α, searches
will be completed more quickly at the expense of greater
memory usage. In the limiting case α = 1, searches are
completed in constant time, independent of the network
size, despite the simple-minded nature of the random walk
search algorithm.

The price we pay for this good performance is that the
network becomes dense, having a number of edges scaling
as n1+α. It is important to bear in mind, however, that
this is a virtual network, in which the edges are a purely
notional construct whose creation and maintenance car-
ries essentially zero cost. There is a cost associated with
the directories maintained by vertices, which for α = 1
will contain information on the items held by a fixed frac-
tion of all the vertices in the network. For instance, each
vertex might be required to maintain a directory of 1% of
all items in the network. Because of the nature of mod-
ern computer technology, however, we don’t expect this
to create a significant problem. User time (for perform-
ing searches) and CPU time and bandwidth are scarce
resources that must be carefully conserved, but memory
space on hard disks is cheap, and the tens or even hundreds
of megabytes needed to maintain a directory is considered
in most cases to be a small investment. By making the
choice α = 1 we can trade cheap memory resources for
essentially optimal behavior in terms of search time and
this is normally a good deal for the user.

We note also that the search process is naturally par-
allelizable: there is nothing to stop the vertex originating
a search from sending out several independent random
walkers and the expected time to complete the search will
be reduced by a factor of the number of walkers. Alter-
natively, we could reduce the degrees of all vertices in the
network by a constant factor and increase the number of
walkers by the same factor, which would keep the average
search time constant while reducing the sizes of the direc-
tories substantially, at the cost of increasing the average
bandwidth load on each vertex.

As a test of our proposed search scheme, we have per-
formed simulations of the procedure on Poisson networks
generated using the random-walker method of Section 3.
Figure 2 shows as a function of network size the average
time τ taken by a random walker to find an item placed at

182 The European Physical Journal B

 90

 100

 110

 120

 130

 140

 150

 160

 170

 0 5000 10000 15000 20000

 T
im

e
τ

Network size n

Fig. 2. The time τ for the random walk search to find an item
deposited at a random vertex, as a function of the number of
vertices n.

a single randomly chosen vertex in the network. As we can
see, the value of τ does indeed tend to a constant (about
100 steps in this case) as network size becomes large.

We should also point out that for small values of µ
vertices with degree zero could cause a problem. A vertex
that loses all of its edges because its neighbors have all
left the network can no longer be reached by our random
walkers, and hence no vertices can attach to them and
our attachment scheme breaks down. However, in the case
considered here, where µ becomes large, the number of
such vertices is exponentially small, and hence they can
be neglected without substantial deleterious effects. Any
vertex that does find itself entirely disconnected from the
network can simply rejoin by the standard mechanism.

4.6 Item frequency distribution

In most cases, the search problem posed above is not a
realistic representation of typical search problems encoun-
tered in peer-to-peer networks. In real networks, copies of
items often occur in many places in the network. Let s be
the number of times a particular item occurs in the net-
work and let ps be the probability distribution of s over
the network, i.e., ps is the fraction of items that exist in s
copies.

If the item we are searching for exists in s copies, then
equation (43) becomes

τs = A
n

µs
, (44)

since the chance of finding a copy of the desired item is
multiplied by s on each step of the random walk. On the
other hand, it is likely that the frequency of searches for
items is not uniformly distributed: more popular items,
that is those with higher s, are likely to be searched for
more often than less popular ones. For the purposes of
illustration, let us make the simple assumption that the
frequency of searches for a particular item is proportional

to the item’s popularity. Then the average time taken by
a search is

〈τ〉 =
∑∞

s=1 spsτs∑∞
s=1 sps

= A
n

µ〈s〉 , (45)

where we have made use of
∑

s ps = 1 and
∑

s sps = 〈s〉.
One possibility is that the total number of copies of

items in the network increases in proportion to the number
of vertices, but that the number of distinct items remains
roughly the same, so that the average number of copies of
a particular item increases as 〈s〉 ∼ n. In this case, 〈τ〉 be-
comes independent of n even when µ is constant, since we
have to search only a constant number of vertices, not a
constant fraction, to find a desired item. Perhaps a more
realistic possibility is that the number of distinct items
increases with network size, but does so slower than n, in
which case one can achieve constant search times with a
mean degree µ that also increases slower than n, so that
directory sizes measured as a fraction of the network size
dwindle.

An alternative scenario is one of items with a power-
law frequency distribution ps ∼ s−δ. This case describes,
for example, most forms of mass art or culture including
books and recordings, emails and other messages circu-
lating on the Internet, and many others [19]. The mean
time to perform a search in the network then depends
on the value of the exponent δ. In many cases we have
δ > 2, which means that 〈s〉 is finite and well-behaved as
the database becomes large, and hence 〈τ〉, equation (45),
differs from equation (43) by only a constant factor. (That
factor may be quite large, making a significant practical
difference to the waiting time for searches to complete,
but the scaling with system size is unchanged.) If δ < 2,
however, then 〈s〉 becomes ill-defined, having a formally
divergent value, so that 〈τ〉 → 0 as system size becomes
large. Physically, this represents the case in which most
searches are for the most commonly occurring items, and
those items occur so commonly that most searches termi-
nate very quickly.

While this extra speed is a desirable feature of the
search process, it’s worth noting that average search time
may not be the most important metric of performance for
users of the network. In many situations, worst-case search
time is a better measure of the ability of the search algo-
rithm to meet users’ demands. Assuming that the most
infrequently occurring items in the network occur only
once, or only a fixed number of times, the worst-case per-
formance will still be given by equation (43).

4.7 Estimating network size

One further detail remains to be considered. If we want to
make the mean degree µ of vertices added to the network
proportional to the size n of the entire network, or to some
power of n, we need to know n, which presents a challenge
since, as we have said, we do not expect any vertex to
know the identity of all or even most of the other vertices.
This problem can be solved using a breadth-first search,

G. Ghoshal and M.E.J. Newman: Growing distributed networks with arbitrary degree distributions 183

which can be implemented once again by message passing
across the network. One vertex i chosen at random (or
more realistically every vertex, at random but stochasti-
cally constant intervals proportional to system size) sends
messages to some number d of randomly chosen neighbors.
The message contains the address of vertex i, a unique
identifier string, and a counter whose initial value is zero.
Each receiving vertex increases the counter by 1, passes
the message on to one of its neighbors, and also sends mes-
sages with the same address, identifier, and with counter
zero to d−1 other neighbors. Any vertex receiving a mes-
sage with an identifier it has seen previously sends the
value of the counter contained in that message back to
vertex i, but does not forward the message to any further
vertices. If vertex i adds together all of the counter val-
ues it receives, the total will equal the number of vertices
(other than itself) in the entire network. This number can
then be broadcast to every other vertex in the network
using a similar breadth-first search (or perhaps as a part
of the next such search instigated by vertex i).

The advantage of this process is that it has a total
bandwidth cost (total number of messages sent) equal
to dn. For constant d therefore, the cost per vertex is a con-
stant and hence the process will scale to arbitrarily large
networks without consuming bandwidth. The (worst-case)
time taken by the process depends on the longest geodesic
path between any two vertices in the network, which is
O(log n). Although not as good as O(1), this still allows
the network to scale to exponentially large sizes before
the time needed to measure network size becomes an is-
sue, and it seems likely that directory size (which scales
linearly with or as a power of n depending on the precise
algorithm) will become a limiting factor long before this
happens.

5 Conclusions

In this paper, we have considered the problem of design-
ing networks indirectly by manipulating the rules by which
they evolve. For certain types of networks, such as peer-
to-peer networks, the limited control that this manipula-
tion gives us over network structure, such as the ability
to impose an arbitrary degree distribution of our choosing
on the network, may be sufficient to generate significant
improvements in network performance. Using generating
function methods, we have shown that it is possible to im-
pose a (nearly) arbitrary degree distribution on a network
by appropriate choice of the “attachment kernel” that gov-
erns how newly added vertices connect to the network.
Furthermore, we have described a scheme based on biased
random walks whereby arbitrary attachment kernels can
be implemented in practice.

We have also considered what particular choices of de-
gree distribution offer the best performance in idealized
networks under simple assumptions about search strate-
gies and bandwidth constraints. We have given general
formulas for search times and bandwidth usage per ver-
tex and studied in detail one particularly simple case of
a Poisson network that can be realized in straightforward

fashion using our biased random walker scheme, allows us
to perform decentralized searches in constant time, and
makes only constant bandwidth demands per vertex, even
in the limit where the database becomes arbitrarily large.
No part of the scheme requires any centralized knowledge
of the network, making the network a true peer-to-peer
network, in the sense of having client nodes only and no
servers.

One important issue that we have neglected in our dis-
cussion is that of “supernodes” in the network. Because
the speed of previous search strategies has been recognized
as a serious problem for peer-to-peer networks, designers
of some networks have chosen to designate a subset of net-
work vertices (typically those with above-average band-
width and CPU resources) as supernodes. These super-
nodes are themselves connected together into a network
over which all search activity takes place. Other client
vertices then query this network when they want a search
performed. Since the size of the supernode network is con-
siderably less than the size of the network as a whole,
this tactic increases the speed of searches, albeit only by
a constant factor, at the expense of heavier load on the
supernode machines. It would be elementary to general-
ize our approach to incorporate supernodes. One would
simply give each supernode a directory of the data items
stored by the client vertices of its supernode neighbors.
Then searches would take place exactly as before, but on
the supernode network alone, and client vertices would
query the supernode network to perform searches. In all
other respects the mechanisms would remain the same.

The authors thank Lada Adamic for useful discussions. This
work was funded in part by the National Science Founda-
tion under grant number DMS–0405348 and by the James S.
McDonnell Foundation.

References

1. M.E.J. Newman, SIAM Review 45, 167 (2003)

2. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U.
Hwang, Phys. Rep. 424, 175 (2006)

3. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks:
From Biological Nets to the Internet and WWW (Oxford
University Press, Oxford, 2003)

4. M.E.J. Newman, A.-L. Barabási, D.J. Watts, The
Structure and Dynamics of Networks (Princeton
University Press, Princeton, 2006)

5. G. Paul, T. Tanizawa, S. Havlin, H.E. Stanley, Eur. Phys.
J. B 38, 187 (2004)

6. L.A. Adamic, R.M. Lukose, A.R. Puniyani, B.A.
Huberman, Phys. Rev. E 64, 046135 (2001)

7. N. Sarshar, P.O. Boykin, V.P. Rowchowdhury, in
Proceedings of the 4th International Conference on Peer-
to-Peer Computing (IEEE Computer Society, New York,
2004), pp. 2–9

8. T. Hong, in Peer-to-Peer: Harnessing the Benefits of a
Disruptive Technology, edited by A. Oram (O’Reilly and
Associates, Sebastopol, CA, 2001), pp. 203–241

184 The European Physical Journal B

9. P.L. Krapivsky, S. Redner, Phys. Rev. E 63, 066123 (2001)

10. C. Moore, G. Ghoshal, M.E.J. Newman, Phys. Rev. E 74,
036121 (2006)

11. M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. E
64, 026118 (2001)

12. N. Sarshar, V. Roychowdhury, Phys. Rev. E 69, 026101
(2004)

13. C. Cooper, A. Frieze, J. Vera, Internet Mathematics 1, 463
(2004)

14. C. Gkantsidis, M. Mihail, A. Saberi, in Proceedings of
the 23rd Annual Joint Conference of the IEEE Computer
and Communications Societies (Institute of Electrical and
Electronics Engineers, New York, 2004)

15. J.P. Ritter, Why Gnutella can’t scale. No, really (2000),
http://www.darkridge.com/ jpr5/doc/gnutella.html

16. M. Ripeanu, I. Foster, A. Iamnitchi, IEEE Internet
Computing 6, 50 (2002)

17. A. Broder, A. Karlin, Journal of Theoretical Probability
2, 101 (1989)

18. W. Aiello, F. Chung, L. Lu, in Proceedings of the
32nd Annual ACM Symposium on Theory of Computing
(Association of Computing Machinery, New York, 2000),
pp. 171–180

19. M.E.J. Newman, Contemporary Physics 46, 323 (2005)

